En esta página se recoge información descriptiva de las asignaturas optativas de 7º semestre del Grado en Ingeniería Informática, recogidas en orden alfabético:
El desarrollo vertiginoso de la informática en las últimas décadas y su integración en todos los ámbitos de la sociedad ha causado un enorme crecimiento de esta disciplina que ha provocado la aparición de diversas especialidades dentro de la misma. Esa especialización queda plasmada en los diversos currículos que ha planteado ACM para esta disciplina que son un reflejo de los distintos perfiles laborales presentes actualmente en esta profesión.
Dentro de estos perfiles, se encuentra el de “Information Technology” (IT), que hace énfasis en la gestión de sistemas informáticos, su configuración, administración y el despliegue de aplicaciones y servicios sobre los mismos. Este perfil profesional presenta una demanda laboral considerable puesto que es habitual que en la mayoría de las organizaciones exista un departamento de IT (en el popular término DevOps, que intenta reflejar los distintos roles presentes en el equipo de informática de una organización, corresponde a Ops, es decir, al equipo de operaciones).
Esta titulación, como es lógico dadas las limitaciones de tiempo, tiene un enfoque generalista, no profundizando en algunas de las tecnologías requeridas dentro del campo IT.
Esta asignatura intenta paliar este déficit centrándose en el campo de la administración de sistemas. En la asignatura, se estudiará de forma práctica cuáles son las labores que lleva a cabo un administrador de sistemas, tanto si trabaja con la infraestructura de la propia organización (on premises) como si usa una solución cloud. Asimismo, además de revisar cómo se realizan las labores de administración en un caso práctico, se estudian las técnicas y herramientas que permiten automatizar este proceso.
Como caso práctico, se usará Linux por la gran difusión de este sistema operativo en todos los ámbitos. La materia presentada durante el curso cubrirá todos los contenidos requeridos por el certificado profesional LPIC-1 del Instituto Profesional de Linux, facilitando, por tanto, la posibilidad de que un alumno o alumna pueda conseguir a posteriori este certificado.
Con respecto a la administración en entornos cloud, se estudiará la plataforma Azure proporcionando a los estudiantes de la asignatura una cuenta para acceder a dicha plataforma.
Por lo que se refiere a las herramientas de automatización, se presentarán soluciones de IaC (Infrastructure as Code) como Ansible y Terraform.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 60.
Fernando Pérez Costoya: fperez@fi.upm.es
El objetivo de esta asignatura es que el alumno adquiera los conocimientos básicos del área de procesado digital de imágenes. Con objeto de afianzar estos conocimientos, se presentan diferentes casos reales dentro del campo de la Teledetección.
El interés de encuadrar la parte práctica de la asignatura en este campo de investigación es que la identificación, análisis e interpretación de la información contenida en las imágenes obtenidas mediante sensores remotos (tanto desde plataformas aeroespaciales, como desde UAV), es de gran utilidad para evaluaciones de las características geométricas y estimaciones generales de cubiertas terrestres a diferentes escalas espaciales y temporales. La interpretación automática de las imágenes se define como un análisis cuantitativo, debido a su facilidad para identificar puntos basándose en sus propiedades numéricas y contabilizarlos para realizar estimaciones de superficies. Todos estas técnicas tienen una aplicación directa entre otras en: la planificación y gestión de recursos naturales (forestales, cultivos, hídricos, ...) y catástrofes (terremotos, tsunamis, incendios, ...), actualización de bases de datos espaciales, y gestión del territorio.
Aún cuando está asignatura es autocontenida, nociones sobre Algorítmica Numérica, Algebra Lineal, Probabilidades y Estadísticas o Inteligencia Artificial pueden ser útiles para su seguimiento. En cualquier caso, lo mas importante es el interés por aprender a procesar y analizar imágenes digitales.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 53.
Ángel Mario García Pedrero: angelmario.garcia@upm.es
Esta asignatura pretende servir de introducción al mundo de la computación de altas prestaciones o HPC (High Performance Computing). Para ello se muestran los principales logros tecnológicos en el mundo hardware (paralelismo interno, multiprocesadores y multicores, procesadores gráficos y vectoriales, etc.) así como en el software, haciendo particular hincapié en el desarrollo de casos prácticos, ya que toda la asignatura tiene un fuerte enfoque práctico.
La computación de altas prestaciones busca explotar todos los niveles de paralelismo: paralelismo a nivel de instrucciones, a nivel de datos, a nivel de cores en una misma máquina o entre distintas máquinas conectadas por una red. A la hora de programarlas se usarán diferentes estándares de programación paralela: MPI y OpenMP. Asimismo, se explicará el uso de la vectorización para obtener mejores prestaciones y se introducirá el profiling de aplicaciones científicas, mediante el uso de distintas herramientas. Por último, se introducirá el uso de las tarjetas gráficas (GPU) como coprocesadores para acelerar aplicaciones intensivas en cómputo.
Arquitectura De Computadores, también se necesita poseer destrezas básicas a la hora de programar, así como conocimientos básicos de concurrencia.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 38.
Antonio García Dopico: dopico@fi.upm.es
La asignatura proporcionará a los estudiantes una primera toma de contacto con las infraestructuras cloud y aprenderán sus conceptos básicos. Además, descubrirán los principales servicios cloud (computación, almacenamiento, redes y base de datos), cómo securizar estos servicios y desplegarán aplicaciones altamente disponibles y tolerantes a fallos en la infraestructura pública del proveedor cloud comercial.
La asignatura cubre los contenidos de la certificación oficial de Amazon Web Services “AWS Certified Cloud Practitioner (CLF-C01)”. Además, los estudiantes recibirán un badge digital acreditado por AWS de superación del curso, al ser la UPM academia acreditada del programa AWS Academy.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 53.
Sonia de Frutos Cid: sonia.frutos@upm.es
El curso pretende dar un panorama del creciente tema de la Información y Computación Cuántica desde un punto de vista de Ciencias de la Computación.
Es éste un nuevo paradigma en computación que está ganando mucha relevancia y que permite hacer cosas que clásicamente o bien son imposibles (como es el caso de la transmisión de claves con secreto garantizado) o con una complejidad computacional menor (como en el algoritmo de Grover, para búsquedas no dirigidas) que puede llegar a cambiar de orden de complejidad con respecto al mejor algoritmo clásico conocido (como el Algoritmo de Shor, que factoriza números en tiempo polinomial, rompiendo así los sistemas de clave pública habituales, como son la RSA o los basados en curvas elípticas). Por otro lado, la criptografía cuántica ofrece un método de distribución de claves secretas que es inmune ante cualquier ataque computacional -algo que antes no era posible- y se está empezando a usar ya en redes de comunicaciones, aspectos que también veremos.
Un aspecto más desconocido, pero muy importante para la industria es su uso para optimización, lo que tiene implicaciones desde farmacología a problemas de camino mínimo o para inteligencia artificial. Son estos últimos algoritmos los que han despertado el interés de gigantes en el mundo de la informática como Google, Microsoft o IBM. El curso acabará con un panorama de estos métodos y una breve descripción del hardware que se está usando para implementar los nuevos ordenadores cuánticos.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 30.
Vicente Martín Ayuso: vicente@fi.upm.es
En este curso se introducirán los conceptos básicos de la biocomputación (computación con biomoléculas) y la biología sintética (la ingeniería de la biología). Los estudiantes comprenderán cómo se puede procesar información codificada en biomoléculas (ADN, ARN, proteínas) empleando otras biomoléculas como hardware biológico. Y comprenderán cómo en la disciplina denominada biología sintética se aplican principios de ingeniería para diseñar, construir y reprogramar sistemas biológicos. La pregunta es: ¿se pueden diseñar y escribir programas genéticos en ADN o ARN (el software) para ser ejecutados en un procesador celular (el hardware)? La respuesta es sí. Veremos ejemplos pioneros de este campo. El curso es autocontenido. Los conceptos básicos de biología necesarios para seguir el curso se describirán en el propio curso.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 38.
Alfonso Rodríguez-Patón: arpaton@fi.upm.es www.lia.upm.es
La Nanotecnología es una ciencia emergente en diversos ámbitos científicos con un gran número de aplicaciones en la actualidad. Algunas de sus definiciones confluyen en la idea de que trata sobre la manipulación de la materia a escala atómica, molecular y supramolecular. Una descripción más generalizada de la Nanotecnología, se expresa como la Ciencia que trata de la manipulación de la materia con al menos una dimensión con tamaño entre 1 a 100 nanómetros. Si se define la Nanotecnología de acuerdo con el criterio que considera la dimensión de la materia, lleva naturalmente a la consideración de un campo muy amplio, que incluye diferentes disciplinas de la Ciencia tan diversas como la Ciencia de las Superficies, la Química Orgánica, la Biología Molecular, la Física de Semiconductores, la Medicina, la Electrónica etc. Las investigaciones y aplicaciones asociadas son igualmente diversas, yendo desde la física de dispositivos, a nuevas soluciones basadas en autoensamblaje molecular y desde el desarrollo de nuevos materiales hasta el control directo de la materia a escala atómica.
En esta asignatura, se pretende dar al alumno una formación introductoria sobre las diferentes investigaciones y aplicaciones que existen actualmente dentro de la Nanotecnología, en los diferentes campos científicos que abarca.
Curiosidad, interés por estudiar y ganas de entender alguna/s de las áreas de las ciencias que se relacionan con la Nanotecnología.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 60.
Estibaliz Martinez Izquierdo: emartinez@fi.upm.es
El reconocimiento de patrones se apoya en el aprendizaje automático para el descubrimiento de regularidades en datos y su uso para tomar acciones como clasificar los datos en diferentes categorías. Tiene aplicaciones en el análisis de imágenes, la recuperación de información, bioinformática, etc.
El objetivo de la asignatura es introducir al alumno en los fundamentos de la clasificación y en alguna de sus aplicaciones, principalmente en el contexto del análisis de datos e imágenes. Para las prácticas se utilizará el lenguaje Python y diversas librerías de su entorno como Numpy y Scikitlearn.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 60.
Luis Baumela: lbaumela@fi.upm.es
El objetivo de esta asignatura es proporcionar la base teórica y práctica sobre los fundamentos metodológicos y tecnológicos implicados en la generación y publicación de vocabularios y datos de la Web de datos enlazados.
Esto significa:
Esta asignatura se da en dos turnos, uno en inglés y otro en español. Asimismo, la docencia y actividad de la asignatura se concentra fundamentalmente en los meses de septiembre y octubre.
Haber superado la asignatura de Inteligencia Artificial. Es recomendable tener conocimientos de Sistemas Orientados a Servicios.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 75.
Oscar corcho: oscar.corcho@upm.es
Todos los procesos para ser desarrollados precisan de un proceso de planificación. De la bondad de ese plan se generará un proyecto malo, bueno u óptimo. La capacidad de planificar correctamente un plan debe ser aprendida, no es innata, por eso el conocimiento de diferentes técnicas de planificación ayudan al desarrollo correcto de un proyecto bien construido y desarrollado.
Haber superado la asignatura de Inteligencia Artificial.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 105.
Vicente Martínez Orga: vicente.martinez@upm.es
Este curso pretende mostrar al estudiante de informática las técnicas computacionales básicas con un mayor impacto en el área de la computación científica. El objetivo es que sea capaz, bien de integrarse en un grupo de trabajo ocupado en resolver este tipo de problemas o bien de asesorar sobre el uso óptimo de la informática en este campo.
El énfasis se pone en dos áreas, por un lado las técnicas que permiten extraer el máximo rendimiento de sistemas secuenciales y por otro la explotación del paralelismo. Adicionalmente se tratan temas de benchmarking, uso de dispositivos especializados (GPUs, MICs) y creación de aplicaciones para la presentación y exploración de las -típicamente enormes- cantidades de datos generadas por los programas de cálculo masivo usuales en este campo.
En la medida que sea posible, se traerán profesores y personal especializado para impartir seminarios. La asignatura tiene un carácter práctico y, aproximadamente, la mitad de las clases se hacen en aula informática donde usaremos el cluster Triqui.
Esta asignatura participa en el sistema piloto de preinscripción de optativas. Cupo de preinscripción: 38.
Juan P. Brito Méndez: jp.brito@fi.upm.es
La asignatura ayuda al estudiante a adquirir los fundamentos necesarios para diseñar, securizar, operar y resolver problemas en redes de ordenadores actuales, con un enfoque práctico centrado en el uso de simuladores y laboratorios con equipos físicos.
La asignatura está estructurada en 3 módulos:
La asignatura cubre los contenidos de la certificación profesional de Cisco "CCNA 200-301". Al superar estos módulos, los estudiantes recibirán badges digitales acreditados por CISCO al ser la UPM academia acreditada del programa Cisco Networking Academy.
Esta asigantura tiene un proceso propio de preinscripción. Los interesados deben ponerse en contacto con su coordinadora.
Sonia de Frutos Cid: sonia.frutos@upm.es