

Computación para Ciencias e Ingeniería Guía de Aprendizaje – Información al estudiante

1.Datos Descriptivos

Asignatura	Computación para Ciencias e Ingeniería
Materia	Computación para Ciencias e Ingeniería
Departamento responsable	Lenguajes y Sistemas Informáticos en Ingeniería del Software
Créditos ECTS	6
Carácter	Obligatorio
Titulación	Máster Universitario en Ingeniería Informática por la Universidad Politécnica de Madrid
Curso	1°
Especialidad	No aplica

Curso académico	2013-2014
Semestre en que se imparte	Segundo (febrero a junio)
Semestre principal	FebJunio
Idioma en que se imparte	Español
Página Web	

2.Profesorado

NOMBRE Y APELLIDO	DESPACHO	Correo electrónico
Vicente Martín Ayuso (Coord.)	5209	vicente@fi.upm.es
Jose María Peña	4201	jmpena@fi.upm.es
María S. Pérez	4204	mperez@fi.upm.es
Antonio Garcia Dopico	4202	dopico@fi.upm.es
Susana Cubillo	1301	scubillo@fi.upm.es
Emilio Torrano	1320	emilio@fi.upm
Juan Robles Santamarta	5201	irobles@fi.upm.es

3. Conocimientos previos requeridos para poder seguir con normalidad la asignatura

Asignaturas superadas	•
Otros resultados de aprendizaje necesarios	 Conocimientos básicos de algorítmica numérica y arquitectura de ordenadores.

4. Objetivos de Aprendizaje

COMPETENCIAS ASIGNADAS A LA ASIGNATURA Y SU NIVEL DE ADQUISICIÓN		
Código	Competencia	Nivel
CG1	Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio.	А
CG9	Aplicación de los métodos de resolución de problemas más recientes o innovadores y que puedan implicar el uso de otras disciplinas.	Р
CG13	Apreciación de los límites del conocimiento actual y de la aplicación práctica de la tecnología más reciente.	Р
CG15	Capacidad para contribuir al desarrollo futuro de la informática.	Р
CE-4	Capacidad para modelar, diseñar, definir la arquitectura, implantar, gestionar, operar, administrar y mantener aplicaciones, redes, sistemas, servicios y contenidos informáticos.	Р
CE-9	Capacidad para diseñar y evaluar sistemas operativos y servidores, y aplicaciones y sistemas basados en computación distribuida.	Р
CE-10	Capacidad para comprender y poder aplicar conocimientos avanzados de computación de altas prestaciones y métodos numéricos o computacionales a problemas de ingeniería.	А

LEYENDA: Nivel de competencia: conocimiento (1), comprensión (2), aplicación (3) y análisis y síntesis (4),

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

RESULTADOS DE APRENDIZAJE DE LA ASIGNATURA			
Código	Resultado de aprendizaje	Competen- cias asociadas	Nivel de adquisi- ción
RA1	Aplicar técnicas y herramientas de computación de alto rendimiento para la solución de problemas prácticos	CG1, CG9, CE10	А
RA2	Aplicar algoritmos numéricos al modelado de problemas prácticos	CG1, CG9, CE10	Α
RA3	Relacionar las necesidades de los algoritmos numéricos en el modelado de problemas con su implementación práctica en hardware/software de alto rendimiento	CG13, CG15, CE4, CE9, CE10	А

5. Sistema de evaluación de la asignatura

	INDICADORES DE LOGRO		
Ref	Indicador	Relacionado con RA	
I1	Reconocer los problemas y las características de los mismos que hacen que se necesite computación de altas prestaciones para resolverlos.	RA1,RA3	
12	Analizar la relación de los algoritmos numéricos con la infraestructura HW y SW para su correcta implementación en sistemas de alto rendimiento.	RA1, RA2, RA3	
13	Estudiar el coste HW (memoria, CPU, comunicaciones, almacenamiento, etc.) de algoritmos numéricos en casos prácticos	RA2	
14	Estudiar la implementación de algoritmos numéricos en términos de su rendimiento y coste en una implementación práctica en sistemas de alto rendimiento.	RA1,RA2, RA3	
15	Conocer la aplicación de las herramientas HW y SW de alto rendimiento necesarias para el uso práctico de los algoritmos numéricos.	RA1,RA2, RA3	
15			
16			

EVALUACION SUMATIVA			
Breve descripción de las actividades evaluables	Momento	Lugar	Peso en la calif.
Primer Proyecto: Exposición y Defensa.	Semana 3	Aula habitual (con ordenador conectado a la red)	25.00%
Primer Proyecto: Memoria escrita	Semana 5		25.00%

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

EVALUACION SUMATIVA			
Momento	Lugar	Peso en la calif.	
Semana 6	Aula habitual (con ordenador conectado a la red)	25.00%	
Semana Exámenes		25.00%	
-			
	Momento Semana 6 Semana	Momento Lugar Aula habitual (con ordenador conectado a la red) Semana	

FACULTAD DE INFORMÁTICA Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN

El método de evaluación normal de la asignatura es el de evaluación continua. Conforme a la normativa UPM, se admite también el método de evaluación única para aquellos alumnos que así lo deseen. Para ello, deberán solicitarlo por escrito al coordinador de la asignatura en un plazo no superior a 30 días tras el inicio de las clases.

Evaluación continua:

Para poder ser evaluado de manera continua se requiere una asistencia mínima al 70% a las actividades de la asignatura.

La calificación se obtendrá mediante pruebas orales, trabajos/proyectos e informes/memorias de los trabajos prácticos.

Las pruebas se organizan entorno a 2 proyectos que el alumno deberá realizar durante el transcurso de la asignatura. Una terminará en la primera mitad y otra en la segunda.

El proyecto de la primera mitad versará sobre uno de los temas explicados durante la primera mitad el curso, de igual manera se hará para el proyecto de la segunda mitad.

Cada proyecto será evaluado en dos fases. La primera consistirá en la exposición y defensa del trabajo. La segunda será la evaluación de la memoria escrita presentada.

El valor de cada uno de los dos proyectos es el mismo. El valor de cada parte es del 50% para un total de 100% por proyecto.

Evaluación única: Acorde a la normativa de exámenes (artículo 20.2) de la universidad, se permite una evaluación única, no continua, para aquellas alumnos que así lo soliciten. Los alumnos que lo deseen deberán solicitarlo por escrito al coordinador de la asignatura en un plazo no superior a 30 días tras el inicio de las clases.

Esta evaluación consistirá en un examen de implementación de algoritmos numéricos y la solución de problemas propuestos. Se realizará en las fechas establecidas por jefatura de estudios.

Examen Extraordinario de Julio: Acorde a la normativa de la universidad, se establece una convocatoria extraordinaria que consiste en un examen de implementación de algoritmos numéricos y la solución de problemas

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

CRITERIOS DE CALIFICACIÓN propuestos. Se realizará en las fechas establecidas por jefatura de estudios.

6. Contenidos y Actividades de Aprendizaje

CONTENIDOS ESPECÍFICOS		
Bloque / Tema / Capítulo	Apartado	Indicadores Relaciona- dos
Tema 1: Modelos y algoritmos de ranking	Modelos matemáticos y algorítmos de indexación de la información. Algoritmo PageRank de búsqueda en la web.	l1-5
Tema 2: Información y Computación Cuántica	Nuevos modelos de procesado y representación de la información. Algorítmica y técnicas derivadas de información cuántica.	l1-5
Tema 3: Lógica Borrosa	Lógica Borrosa. Aplicación al Tratamiento de imágenes.	l1-5
Tema 4: Simulación Monte Carlo: Aplicaciones en Biomedicina	Introducción a los modelos de simulación Monte Carlo. Aplicaciones: Simulación molecular y farmacoeconomía (diseño de ensayos clínicos).	l1-5
Tema 5: Computación Paralela: Monitorización y Explotación de un Cluster (Casos de Estudio)	Computación alto rendimiento. Concepto de cluster y monitorización del mismo. Ejemplos de estrategias de paralelización de código científico.	l1-5
Tema 6: Diseño de Superficies	Diseño de superficies: splines cúbicos y bicúbicos	I1-5

Boadilla del Monte. 28660 Madrid

7.Breve descripción de las modalidades organizativas utilizadas y de los métodos de enseñanza empleados

Table 7. Modelidades organizativas de la enseñanza			
MODALIDADES ORGANIZATIVAS DE LA ENSEÑANZA			
Escenario	Modalidad	Finalidad	
	Clases Teóricas	Hablar a los estudiantes	
	Seminarios-Talleres	Construir conocimiento a través de la interacción y la actividad de los estudiantes	
ର୍ଧିତ ଟୁସା ଝନ୍ତ୍ର	Clases Prácticas	Mostrar a los estudiantes cómo deben actuar	
	Prácticas Externas	Completar la formación de los alumnos en un contexto profesional	
2	Tutorías	Atención personalizada a los estudiantes	
3 3	Trabajo en grupo	Hacer que los estudiantes aprendan entre ellos	
	Trabajo autónomo	Desarrollar la capacidad de autoaprendizaje	

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Tabla 9. Métodos de enseñanza		
MÉTODOS DE ENSEÑANZA		
	Método	Finalidad
1	Método Expositivo/Lección Magistral	Transmitir conocimientos y activar procesos cognitivos en el estudiante
••••	Estudio de Casos	Adquisición de aprendizajes mediante el análisis de casos reales o simulados
	Resolución de Ejercicios y Problemas	Ejercitar, ensayar y poner en práctica los conocimientos previos
₽	Aprendizaje Basado en Problemas (ABP)	Desarrollar aprendizajes activos a través de la resolución de problemas
	Aprendizaje orientado a Proyectos	Realización de un proyecto para la resolución de un problema, aplicando habilidades y conocimientos adquiridos
$\times\!$	Aprendizaje Cooperativo	Desarrollar aprendizajes activos y significativos de forma cooperativa
—	Contrato de Aprendizaje	Desarrollar el aprendizaje autónomo

Se conoce como método expositivo "la presentación de un tema lógicamente estructurado con la finalidad de facilitar información organizada siguiendo criterios adecuados a la finalidad pretendida". Esta metodología -también conocida como lección (lecture)- se centra fundamentalmente en la exposición verbal por parte del profesor de los contenidos sobre la materia objeto de estudio. El término "lección magistral" se suele utilizar para denominar un tipo específico de lección impartida por un profesor en ocasiones especiales.

Análisis intensivo y completo de un hecho, problema o suceso real con la finalidad de conocerlo, interpretarlo, resolverlo, generar hipótesis, contrastar datos, reflexionar, completar conocimientos, diagnosticarlo y, en ocasiones, entrenarse en los posibles procedimientos alternativos de solución.

Situaciones en las que se solicita a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados. Se suele utilizar como complemento de la lección magistral.

Método de enseñanza-aprendizaje cuyo punto de partida es un problema que, diseñado por el profesor, el estudiante ha de resolver para desarrollar determinadas competencias previamente definidas.

Método de enseñanza-aprendizaje en el que los estudiantes llevan a cabo la realización de un proyecto en un tiempo determinado para resolver un problema o abordar una tarea mediante la planificación, diseño y realización de una serie de actividades, y todo ello a partir del desarrollo y aplicación de aprendizajes adquiridos y del uso efectivo de recursos.

Enfoque interactivo de organización del trabajo en el aula en el cual los alumnos son responsables de su aprendizaje y del de sus compañeros en una estrategia de corresponsabilidad para alcanzar metas e incentivos grupales.

Es tanto un método, a utilizar entre otros, como un enfoque global de la enseñanza, una filosofía.

Un acuerdo establecido entre el profesor y el estudiante para la consecución de unos aprendizajes a través de una propuesta de trabajo autónomo, con una supervisión por parte del profesor y durante un período determinado. En el contrato de aprendizaje es básico un acuerdo formalizado, una relación de contraprestación recíproca, una implicación personal y un marco temporal de ejecución.

Campus de Montegancedo Boadilla del Monte. 28660 Madrid

Durante una clase de teoría o lección magistral, el profesor realiza una exposición verbal de los contenidos sobre la materia objeto de estudio, mediante la cual suministra a los alumnos información esencial y organizada procedente de diversas fuentes con unos objetivos específicos predefinidos (motivar al alumno, exponer los contenidos sobre un tema, explicar conocimientos, efectuar demostraciones teóricas, presentar experiencias, etc.) pudiendo utilizar para ello, además de la exposición oral, otros recursos didácticos (audiovisuales, documentos, etc).
Este método de enseñanza se utiliza como complemento de la clase de teoría (lección magistral) y se basa en solicitar a los estudiantes que desarrollen las soluciones adecuadas o correctas mediante la ejercitación de rutinas, la aplicación de fórmulas o algoritmos, la aplicación de procedimientos de transformación de la información disponible y la interpretación de los resultados.
La intención principal es la de aplicar lo ya aprendido para favorecer la comprensión tanto de la importancia como del contenido de un nuevo tema, afianzar conocimientos y estrategias y su aplicación en las situaciones prácticas que se planteen.
Clases que se imparten en aula informática con acceso a los recursos computacionales que se necesitan para el desarrollo de la materia. El alumno trabaja individualmente o en grupos muy reducidos (2-3 estudiantes) en la implementación y aplicación de un algoritmo bajo la supervisión del profesor.

8. Recursos didácticos

RECURSOS DIDÁCTICOS					
BIBLIOGRAFÍA	Google's PageRank and Beyond. The science of search engine rankings. Amy N. Langville, Carl D. Meyer. Princeton University Press, 2006				
	Quantum Computation and Quantum Information, Nielsen, Chuang. ISBN 0521635039 (ISBN13: 9780521635035)				
	Fuzzy Sets and Their Extensions: Representation, Aggregation and Models", Studies in Fuzzy Sets and Soft Computing, ed. Humberto Bustince et al., Springer 2010				
	"THE FOURTH PARADIGM. Data-Intensive Scientific Discovery". Edited by Tony Hey, Stewart Tansley and Kristin Tolle. Microsoft Research, October 2009. "Riding the wave. How Europe can gain from the rising tide of scientific data" Final report of the High level Expert Group on Scientific Data A submission to the European Commission. October 2010				
	Su Bu-Quing and Liu Ding-Yuan, Computational Geometry, Curve and Surface Modeling, Academic Press Inc., Boston, 1989.				
	Rubinstein, R.Y., & Kroese, D.P. (2011). Simulation and the Monte Carlo method. Vol. 707. Wiley. Com.				
	Página web de la asignatura (http://)				
RECURSOS WEB	http://www.				
	Laboratorio				
EQUIPAMIENTO	Aula XXXX				
	Sala de trabajo en grupo				

Cronograma de trabajo de la asignatura

Semana	Actividades en Aula	Actividades en Laboratorio	Trabajo Individual	Trabajo en Grupo	Actividades de Evaluación	(
Semanas 1 2 1/2	Modelos y algoritmos de ranking (10h)	Práctica tutorada	• 10 horas	• 2 horas (proyecto)		•
Semanas 2 1/2 5	Computación en Información Cuántica (10h)		• 10 horas	2 horas (proyecto)	•	•
Semanas 6 7 1/2	Lógica Borrosa. Aplicación al Tratamiento de imágenes (10h)		• 10 horas	• 2 horas (proyecto)	•	•
Semana 7 1/2 8	Presentaciones (6h)		8 horas (proyecto)	•	Defensa proyecto 1	•
Semanas 9 10 1/2	Simulación Monte Carlo: Aplicaciones en Biomedicina (10h)		• 10 horas	2 horas (proyecto)	•	•
Semanas 10 1/2 11 1/2	Computación Paralela: Monitorización y Explotación de un Cluster (Casos de Estudio) (10h)		• 10 horas	2 horas (proyecto)	•	•
Semanas 11 1/2-13	Diseño de Superficies (10h)		• 10 horas	• 2 horas (proyecto)	•	•
Semana 14 14 1/2	Presentaciones (6h)		8 horas (proyecto)	•	Defensa proyecto 2	•
Semana Examenes	EXAMEN FINAL TEORIA Solo para alumnos que no superen los proyectos		Se supone un seguimiento previo asignatura.		•	•

Nota: Para cada actividad se especifica la dedicación en horas que implica para el alumno.

Horas presenciales en aula: clases $6 \times 10 \text{ h} = 60 + \text{Defensa trabajos } 2 \times 6 \text{ h} = 12 = 72 \text{ horas}$

Horas de trabajo individual/grupo = 88

Total: 160 horas (6 créditos)