
Formal Methods at Work

M. Carro

IMDEA Software Institute
and

Technical University of Madrid

May 11, 2015



www.imdea.org

Part I

Where Do We Stand?

madrid institute for advanced studies in software development technologies



www.imdea.org

Software is omnipresent in everyday life
Today’s car: typically 100 processing units, 100 M. lines of code, 600
Quijotes, 7.000 programmer years.

madrid institute for advanced studies in software development technologies



www.imdea.org

Software is omnipresent in everyday life
Plane: computers manage controls, calculate routes, ...

madrid institute for advanced studies in software development technologies



www.imdea.org

Software is omnipresent in everyday life
Large interconnected systems: independent, isolated, automatic decision
making, which must be globally correct.

madrid institute for advanced studies in software development technologies



www.imdea.org

Software is omnipresent in everyday life
Cell phones (from O.S. to compression algorithms to user interfaces).
HDTV (routing, encoding and decoding).
Buy and sell on the Internet (web interfaces, databases, encryption).
Stock market (algorithmic trading, high frequency trading).

madrid institute for advanced studies in software development technologies



www.imdea.org

√
Managed by extremely complex software.

√
All of them critical to a certain degree.

√
Some extremely critical

madrid institute for advanced studies in software development technologies



www.imdea.org

√
Managed by extremely complex software.

√
All of them critical to a certain degree.

√
Some extremely critical

Challenge:
How to develop complex software, with
resources that are always limited, assuring
that it will work correctly?

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012:

Skype bug sends messages to unintended recipients.

July 13, 2012:

Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012:

Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012:

iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012:

Still infected, 300,000 PCs to lose Internet access.

July 12, 2012:

Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012:

German security experts find major flaw in credit card terminals.

July 13, 2012:

Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!

July 16, 2012: Skype bug sends messages to unintended recipients.

July 13, 2012: Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012: Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012: iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012: Still infected, 300,000 PCs to lose Internet access.

July 12, 2012: Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012: German security experts find major flaw in credit card terminals.

July 13, 2012: Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

How Far Are We from Giving Reasonable
Guarantees?
(Only showing some types of problems)

Ju
st

tw
o

w
ee

ks
!!

!July 16, 2012: Skype bug sends messages to unintended recipients.

July 13, 2012: Apple’s “in-app purchase” service for iOS bypassed by Russian
hacker.

July 12, 2012: Mountain Lion (Mac OS X version) sends some 64-bit Macs to sleep
(related to graphics drivers).

July 5, 2012: iOS, Mac app crashes linked to botched FairPlay DRM.

July 7, 2012: Still infected, 300,000 PCs to lose Internet access.

July 12, 2012: Hackers expose 453,000 credentials allegedly taken from Yahoo
service.

July 13, 2012: German security experts find major flaw in credit card terminals.

July 13, 2012: Defects leave critical military, industrial infrastructure open to hacks
(Niagara Framework, linking 11+ million devices in 52 countries).

madrid institute for advanced studies in software development technologies



www.imdea.org

The Ariane 5 Incident
Example: effect of a single integer overflow.

From the outside...
June 4, 1996: After launch, the Ariane 5
rocked exploded.
This was its maiden voyage.
It flew for about 37 sec. only in Kourou’s sky.
No injury in the disaster.

madrid institute for advanced studies in software development technologies



www.imdea.org

The Ariane 5 Incident
Example: effect of a single integer overflow.

From the outside...
June 4, 1996: After launch, the Ariane 5
rocked exploded.
This was its maiden voyage.
It flew for about 37 sec. only in Kourou’s sky.
No injury in the disaster.

madrid institute for advanced studies in software development technologies



www.imdea.org

Mechanical details
Normal behavior of the launcher for 36 sec. after lift-off.
Failure of both Inertial Reference Systems almost simultaneously.
Strong pivoting of the nozzles of the boosters and Vulcain engine.
Self-destruction at an altitude of 4000 m. (1000 m. from the pad).

Forensic analysis
Both inertial computers failed because of overflow on one variable.
This caused a software exception and stops these computers.
These computers sent post-mortem info through the bus.
Normally the main computer receives velocity info through the bus.
The main computer was confused and pivoted the nozzles.

madrid institute for advanced studies in software development technologies



www.imdea.org

Mechanical details
Normal behavior of the launcher for 36 sec. after lift-off.
Failure of both Inertial Reference Systems almost simultaneously.
Strong pivoting of the nozzles of the boosters and Vulcain engine.
Self-destruction at an altitude of 4000 m. (1000 m. from the pad).

Forensic analysis
Both inertial computers failed because of overflow on one variable.
This caused a software exception and stops these computers.
These computers sent post-mortem info through the bus.
Normally the main computer receives velocity info through the bus.
The main computer was confused and pivoted the nozzles.

madrid institute for advanced studies in software development technologies



www.imdea.org

But, why?
The faulty program was working correctly on Ariane 4.
The faulty program was not tested for A5 (since it worked for A4).
But the velocity of Ariane 5 is far greater than that of Ariane 4.
That caused the overflow in one variable.
The faulty program happened to be useless for Ariane 5.

Message
Does the product conform to specifications?
Maybe it’s important to carry experience in formal methods to industry!
Is it done?

madrid institute for advanced studies in software development technologies



www.imdea.org

But, why?
The faulty program was working correctly on Ariane 4.
The faulty program was not tested for A5 (since it worked for A4).
But the velocity of Ariane 5 is far greater than that of Ariane 4.
That caused the overflow in one variable.
The faulty program happened to be useless for Ariane 5.

Message
Does the product conform to specifications?
Maybe it’s important to carry experience in formal methods to industry!
Is it done?

madrid institute for advanced studies in software development technologies



www.imdea.org

Formal Methods in Industry
Actually, yes — at least in some domains, for some types of applications.
Using many approaches, actually [WLBF09].

We will see some examples

madrid institute for advanced studies in software development technologies



www.imdea.org

Part II

The General Does Not Need a
Driver [BBFM99]

madrid institute for advanced studies in software development technologies



www.imdea.org

madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.

Watch for people doing funny things close to the train.
Don’t get too close to the next train.
How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?
Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.
Watch for people doing funny things close to the train.

Don’t get too close to the next train.
How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?
Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.
Watch for people doing funny things close to the train.
Don’t get too close to the next train.

How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?
Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.
Watch for people doing funny things close to the train.
Don’t get too close to the next train.
How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?
Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.
Watch for people doing funny things close to the train.
Don’t get too close to the next train.
How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?

Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Driving a Subway Train Is Easy. . . Is It?

Only two buttons: start and stop.
No crossroads, no people crossing, . . .

Should be easy to automate!
But...

Wait for people to get on board.
Watch for people doing funny things close to the train.
Don’t get too close to the next train.
How can you to try to see if it works?1

And, if it doesn’t, how long does it take to reproduce the bug in your computer?
Or, plainly, how can you reproduce it?

1Same with trains, only worse.
madrid institute for advanced studies in software development technologies



www.imdea.org

Towards an Automatically Managed Subway Line

Add extra sensors.
Add extra mechanisms (doors apart apart from coaches’).
Model the enviroment very precisely.
Correctness by Construction.

madrid institute for advanced studies in software development technologies



www.imdea.org

Paris Metro Line 14

October 15th, 1998, Tolbiac to Madeleine.
(Now extended)
40000 passenger / hour, 85 sec. between trains in peak hour.
2009: 60 million passengers / year.
Decision based on previous experience:

Completely automated line.
Completely developed using formal methods for control systems.
Having manually and automatially driven trains.

madrid institute for advanced studies in software development technologies



www.imdea.org

Subsystems

Automatic control and signaling.
Platform doors.
Audio and Video.
Operating control center.

Developed using the B Method [Abr96], now evolved into Event B [Abr10].

madrid institute for advanced studies in software development technologies



www.imdea.org

Subsystems

Automatic control and signaling.

In the train.

In the operating control center.

Along the tracks.

Running alone on specific, non-interruptible, microprocessor boards.

Platform doors.
Audio and Video.
Operating control center.

Developed using the B Method [Abr96], now evolved into Event B [Abr10].

madrid institute for advanced studies in software development technologies



www.imdea.org

Subsystems

Automatic control and signaling.

In the train.

In the operating control center.

Along the tracks.

Running alone on specific, non-interruptible, microprocessor boards.

Platform doors.
Audio and Video.
Operating control center.

Developed using the B Method [Abr96], now evolved into Event B [Abr10].

madrid institute for advanced studies in software development technologies



www.imdea.org

Subsystems

Automatic control and signaling.

In the train.

In the operating control center.

Along the tracks.

Running alone on specific, non-interruptible, microprocessor boards.

Platform doors.
Audio and Video.
Operating control center.
Developed using the B Method [Abr96], now evolved into Event B [Abr10].

madrid institute for advanced studies in software development technologies



www.imdea.org

Correctness by construction
Make sure that every step is correct

A Taste of B
Model the problem.

Determine the properties
to hold.

Refine the model
(several times,
adding more
details).

Prove that the
refinement is
correct.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

madrid institute for advanced studies in software development technologies



www.imdea.org

Correctness by construction
Make sure that every step is correct

A Taste of B
Model the problem.

Determine the properties
to hold.

Refine the model
(several times,
adding more
details).

Prove that the
refinement is
correct.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Abstract model 1

Abstract model 2

Final abstract model

Refinement

Refinement

madrid institute for advanced studies in software development technologies



www.imdea.org

Correctness by construction
Make sure that every step is correct

A Taste of B
Model the problem.

Determine the properties
to hold.

Refine the model
(several times,
adding more
details).

Prove that the
refinement is
correct.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Concrete model 1

Concrete model 2

Final concrete model

Refinement

Refinement

madrid institute for advanced studies in software development technologies



www.imdea.org

Correctness by construction
Make sure that every step is correct

A Taste of B
Model the problem.

Determine the properties
to hold.

Refine the model
(several times,
adding more
details).

Prove that the
refinement is
correct.

Software requirements

Abstract model

Concrete model

Executable code

Heavy human intervention

Light human intervention

No human intervention

Final concrete model

Program

Executable code

Translation

Compilation

madrid institute for advanced studies in software development technologies



www.imdea.org

INVARIANTS
invBDay : birthday ∈ PERSON 7→DATE

EVENTS

Initialisation
begin

initBDay : birthday := ∅
end

Event addBDay =̂

any
p, d

where
inPerson : p ∈ PERSON
inDate : d ∈ DATE

then
newBDay : birthday(p) := d

end

END

madrid institute for advanced studies in software development technologies



www.imdea.org

INVARIANTS
invBDay : birthday ∈ PERSON 7→DATE

EVENTS

Initialisation
begin

initBDay : birthday := ∅
end

Event addBDay =̂

any
p, d

where
inPerson : p ∈ PERSON
inDate : d ∈ DATE
checkBday : p 6∈ dom(birthday)

then
newBDay : birthday(p) := d

end

END

madrid institute for advanced studies in software development technologies



www.imdea.org

Proofs: Prove mathematically refinements are right.

madrid institute for advanced studies in software development technologies



www.imdea.org

Proofs: Prove mathematically refinements are right.
EQLn > 0 ` 0 = 0 HYPn > 0 ` n > 0

AND R
n > 0 ` (n > 0∧ 0 = 0)

OR R
n > 0 ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)

EQLn < d ` 0 = 0 HYPn < d ` n < d
AND R

n < d ` (n < d ∧ 0 = 0)
OR R

n < d ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)
OR L

n > 0∨ n < d ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)
EQ LR

b = n,n > 0∨ n < d ` (b < d ∧ 0 = 0) ∨ (b > 0∧ 0 = 0)
ARITH

0 + b + 0 = n,n > 0∨ n < d ` (0 + b < d ∧ 0 = 0) ∨ (b > 0∧ 0 = 0)
EQ LR

a + b + 0 = n,n > 0∨ n < d ,a = 0 ` (a + b < d ∧ 0 = 0) ∨ (b > 0∧ a = 0)
ARITH

a ∈N,a + b + 0 = n,n > 0∨ n < d ,¬(a > 0) ` (a + b < d ∧ 0 = 0) ∨ (b > 0∧ a = 0)
NEG

a ∈ N,a + b + 0 = n,n > 0 ∨ n < d ` (a + b < d ∧ 0 = 0) ∨ a > 0 ∨ (b >
0∧ a = 0)

EQ LR
a ∈ N,a + b + c = n,n > 0 ∨ n < d , c = 0 ` (a + b < d ∧ c = 0) ∨ a >
0∨ (b > 0∧ a = 0)

ARITH
a, c ∈ N,a + b + c = n,n > 0 ∨ n < d ,¬(c > 0) ` (a + b < d ∧ c =
0) ∨ a > 0∨ (b > 0∧ a = 0)

NEG
a, c ∈N,a + b + c = n,n > 0∨ n < d ` (a + b < d ∧ c = 0) ∨ c > 0∨ a >
0∨ (b > 0∧ a = 0)

MONa,b, c,d ,n ∈ N,0 < d ,n ≤ d ,a + b + c = n,a = 0 ∨ c =
0,0 < n ∨ n < d ` (a + b < d ∧ c = 0) ∨ c > 0∨ a > 0∨ (b > 0∧ a = 0)

madrid institute for advanced studies in software development technologies



www.imdea.org

Proofs: Prove mathematically refinements are right.
EQLn > 0 ` 0 = 0 HYPn > 0 ` n > 0

AND R
n > 0 ` (n > 0∧ 0 = 0)

OR R
n > 0 ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)

EQLn < d ` 0 = 0 HYPn < d ` n < d
AND R

n < d ` (n < d ∧ 0 = 0)
OR R

n < d ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)
OR L

n > 0∨ n < d ` (n < d ∧ 0 = 0) ∨ (n > 0∧ 0 = 0)
EQ LR

b = n,n > 0∨ n < d ` (b < d ∧ 0 = 0) ∨ (b > 0∧ 0 = 0)
ARITH

0 + b + 0 = n,n > 0∨ n < d ` (0 + b < d ∧ 0 = 0) ∨ (b > 0∧ 0 = 0)
EQ LR

a + b + 0 = n,n > 0∨ n < d ,a = 0 ` (a + b < d ∧ 0 = 0) ∨ (b > 0∧ a = 0)
ARITH

a ∈N,a + b + 0 = n,n > 0∨ n < d ,¬(a > 0) ` (a + b < d ∧ 0 = 0) ∨ (b > 0∧ a = 0)
NEG

a ∈ N,a + b + 0 = n,n > 0 ∨ n < d ` (a + b < d ∧ 0 = 0) ∨ a > 0 ∨ (b >
0∧ a = 0)

EQ LR
a ∈ N,a + b + c = n,n > 0 ∨ n < d , c = 0 ` (a + b < d ∧ c = 0) ∨ a >
0∨ (b > 0∧ a = 0)

ARITH
a, c ∈ N,a + b + c = n,n > 0 ∨ n < d ,¬(c > 0) ` (a + b < d ∧ c =
0) ∨ a > 0∨ (b > 0∧ a = 0)

NEG
a, c ∈N,a + b + c = n,n > 0∨ n < d ` (a + b < d ∧ c = 0) ∨ c > 0∨ a >
0∨ (b > 0∧ a = 0)

MONa,b, c,d ,n ∈ N,0 < d ,n ≤ d ,a + b + c = n,a = 0 ∨ c =
0,0 < n ∨ n < d ` (a + b < d ∧ c = 0) ∨ c > 0∨ a > 0∨ (b > 0∧ a = 0)

Note: invariants are the most important piece
of information. Although many proofs are not
aimed at establishing invariants, virtuall all of
them involve invariants.

madrid institute for advanced studies in software development technologies



www.imdea.org

Tools!
Automate some (many) proofs.
Automatically generate code.
Many advantages when code is
generated.
Example at hand: code
duplication.

Electronic in tunnels:
interference with boards.
Possible corruption of data.
All data duplicated in different
formats.
Code works on both copies.
Constant comparison for
consistency.

madrid institute for advanced studies in software development technologies



www.imdea.org

Statistics

Lines of B: 115.000 .
Lines of Ada: 86.000 .
Lemmas of B: 27.800 .
Automatically proven: 92%.
Time to develop: 4 years (aprox.)

Bugs in development computer: 0
Bugs in target computer: 0
Bugs in on-site tests: 0
Bugs since deployment: 0

madrid institute for advanced studies in software development technologies



www.imdea.org

Statistics

Lines of B: 115.000 .
Lines of Ada: 86.000 .
Lemmas of B: 27.800 .
Automatically proven: 92%.
Time to develop: 4 years (aprox.)

Bugs in development computer: 0
Bugs in target computer: 0
Bugs in on-site tests: 0
Bugs since deployment: 0

madrid institute for advanced studies in software development technologies



www.imdea.org

Part III

Amazon Had 2.000.000.000.000
Things to Care About [NTZ+14]

madrid institute for advanced studies in software development technologies



www.imdea.org

Landscape

Some numbers for AWS’s S3
2013: 2.000.000.000.000 (2 trillions) objects, 1.1 million requests per
second.
High availability.
Scalability.
S3 just one AWS service.
Essential complexity high→ unavoidable human errors.

madrid institute for advanced studies in software development technologies



www.imdea.org

Previously in...

Standard “verification” techniques in industry.
Deep design reviews.
Code reviews (c.f. DB train code reviews).
Static code analysis.
Stress testing.
Fault-injection testing.
. . .

. . . human intuition is poor at estimating the true probability of
supposedly “extremely rare” combinations of events in systems
operating at a scale of millions of requests per second.

madrid institute for advanced studies in software development technologies



www.imdea.org

The History According to the Starring Roles

Engineer C.N. dissatisfied with bugs in implementaions of distributed
algorithms.
Looked for ways to correct them — not thinking on formal methods.
But read paper on formal verification of Chord using Alloy.
Tried to use it, but not rich enough — no good for formal methods!

C.N. read a paper on Leslie Lamport Paxos algorithm — essential in
distributed systems.
At the end of the paper, a TLA+ [Lam02] / TLC formalization.
TLA+ also devised by Leslie Lamport.
Maybe TLA+ / TLC was worth something?
Tried the same example as in Alloy — success!

madrid institute for advanced studies in software development technologies



www.imdea.org

The History According to the Starring Roles

Engineer C.N. dissatisfied with bugs in implementaions of distributed
algorithms.
Looked for ways to correct them — not thinking on formal methods.
But read paper on formal verification of Chord using Alloy.
Tried to use it, but not rich enough — no good for formal methods!
C.N. read a paper on Leslie Lamport Paxos algorithm — essential in
distributed systems.
At the end of the paper, a TLA+ [Lam02] / TLC formalization.
TLA+ also devised by Leslie Lamport.
Maybe TLA+ / TLC was worth something?
Tried the same example as in Alloy — success!

madrid institute for advanced studies in software development technologies



www.imdea.org

The Busy Engineers

But engineers too busy to try new things.
Unless there is a new need — and a new need appeared.

Enter DynamoDB
Scalable, high-performance, high-availability storage.
Testing, stressing, fault injection — but really high confidence was
necessary.

Otherwise data from companies could be lost.

T.R. (DynamoDB’s coauthor) went on to prove relevant properties.
Informal proofs already found bugs.
Which other subtle problems could be hidden?

madrid institute for advanced studies in software development technologies



www.imdea.org

The Busy Engineers

But engineers too busy to try new things.
Unless there is a new need — and a new need appeared.

Enter DynamoDB
Scalable, high-performance, high-availability storage.
Testing, stressing, fault injection — but really high confidence was
necessary.

Otherwise data from companies could be lost.

T.R. (DynamoDB’s coauthor) went on to prove relevant properties.
Informal proofs already found bugs.
Which other subtle problems could be hidden?

madrid institute for advanced studies in software development technologies



www.imdea.org

TLA+ Time

T.R. learned TLA+, formalized (some) DynamoDB algorithms.
Run distributed version of model checker TLC.

Cluster of ten EC2 instances.
Each 8 cores + hyperthreads.
23 GB ram.

Small part of algorithm OK.
But in the full fault-tolerance algorithm a bug was found.

Very subtle — many conditions had to be met.
But historically possible.
Bug had passed all reviews.
Other two bugs were found later on.

madrid institute for advanced studies in software development technologies



www.imdea.org

The History Goes On

New DynamoDB features first modeled and verified in TLA+ — and bugs
were found ahead of time.
Presentation to teams: Debugging Designs.

Exahustively testable pseudo-code.

New fault-tolerant distributed algorithm specified and checked.
Two bugs found.

Management started pushing TLA+ usage in teams.

madrid institute for advanced studies in software development technologies



www.imdea.org

What the Protagonists Say...
[...] help engineers to get the design right. [...] If the design is broken then
the code is almost certainly broken. Coding mistakes extremely unlikely to
compensate mistakes in design.

Engineers probably deceived into believing that code is ‘correct’ because
appears to correctly implement the broken design. Unlikely to realize that
design is incorrect while focusing on coding.

[...] gain a better understanding of the design. [...] can only increase
chances that they will get code right.

[...] write better assertions [...], a good way to reduce errors in code.

Formal methods help engineers to find strong invariants, so formal methods
can help to improve assertions, which help improve the quality of code.
madrid institute for advanced studies in software development technologies



www.imdea.org

Part IV

That Is Not What I Meant [PPS+03]

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl

- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl

- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl

- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl
- Do not leave the water running. What will happen if we run out of water?

- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl
- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.

- (Pointing below the sink). Look: the tap gets water from the pipe, which
comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl
- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.

madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Problem
How misleading are (well-written) natural language specifications?

In general, a lot.
Natural language is ambiguous.
Even if it’s not, it relies a lot on “common knowledge” or “situational
knowledge”.
Kids give us lots of examples: flawless reasoning without knowledge.

A Real Conversation with a 6-Year Old Girl
- Do not leave the water running. What will happen if we run out of water?
- We buy another faucet.
- (Pointing below the sink). Look: the tap gets water from the pipe, which

comes from the wall. Buying another faucet will not help. Now, what
would be do?

- We buy another wall.
madrid institute for advanced studies in software development technologies



www.imdea.org

A Different Experiment

Existing, well-proven implementation of a smartcard.
Natural language specification.
How well can a team of engineers capture understand these
specifications?

madrid institute for advanced studies in software development technologies



www.imdea.org

Using Models to Generate Tests

System

Model

Abstraction

Verified model

Proof

Executable
code

Code
generation

Executable
code

Code
generation

Tests Executable
code

Tester Results

Test
generation

Manual
generation

Execution

madrid institute for advanced studies in software development technologies



www.imdea.org

Using Models to Generate Tests

System

Model

Abstraction

Verified model

Proof

Executable
code

Code
generation

Executable
code

Code
generation

Tests Executable
code

Tester Results

Test
generation

Manual
generation

Execution

madrid institute for advanced studies in software development technologies



www.imdea.org

A SmartCard is...

Fully programmable one-chip computer.
Microprocessor, RAM (currently 256-4096 Bytes), EEPROM (2-16
KBytes), and ROM (8-64 KBytes).
Hierarchical filesystem.
Serial interface.
Sometimes specialized cryptographic microprocessor.

Command interpreter:
Read commands from stdin.
Interpret, execute, write output to stdout.
Execution usually depends on previous commands.

madrid institute for advanced studies in software development technologies



www.imdea.org

A SmartCard is...

Fully programmable one-chip computer.
Microprocessor, RAM (currently 256-4096 Bytes), EEPROM (2-16
KBytes), and ROM (8-64 KBytes).
Hierarchical filesystem.
Serial interface.
Sometimes specialized cryptographic microprocessor.

Command interpreter:
Read commands from stdin.
Interpret, execute, write output to stdout.
Execution usually depends on previous commands.

madrid institute for advanced studies in software development technologies



www.imdea.org

System Under Study
WAP module in GSM standard, implemented in a SmartCard.

madrid institute for advanced studies in software development technologies



www.imdea.org

Subcomponents
Each subcomponent has a expected behavior (i.e., what it expects to
receive and return in every state).

madrid institute for advanced studies in software development technologies



www.imdea.org

Tester: Behavior
From the behavior of the component one can extract the expected behavior
of the tester: what it has to do at every moment to check the component.

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The System to Test

madrid institute for advanced studies in software development technologies



www.imdea.org

The Behavior of the Test Suite

madrid institute for advanced studies in software development technologies



www.imdea.org

The Behavior of the Test Suite

madrid institute for advanced studies in software development technologies



www.imdea.org

Test Coverage and Generation

Testing cannot (in general) ensure correctness.
Only existence of errors can be proven.
Exhaustive testing: very expensive
(in time to generate tests and to execute them)
Test generation needs to execute the program.

If I call operation A with data D, which output would I obtain?

madrid institute for advanced studies in software development technologies



www.imdea.org

Test Generation for the SmartCard

Using CLP.
For a component a with a state machine, a collection of clauses like

step_a(StateIn, Input, StateOut, Output):-
guard(StateIn, Input),
assign(StateIn, Input, StateOut, Output).

Different components can be chained togeter:

step_comp(StateIn, In, StateOut, Out):-
step_a(StateOut, In, S0, O0),
step_b(S0, O0, S1, O1),
...
step_k(Sn, On, StateOut, Out).

Enumerate traces.
Use constraints to reduce trace sizes.

madrid institute for advanced studies in software development technologies



www.imdea.org

CLP to Reduce Traces

Transition has to read value v
from input channel i .

v = read(i);
if (v == k) then ...
else ...

In else branch: assuming all possible values for v not feasible.
Make a trace with v = k and another with v 6= k .
Constraint in the latter→ generate refined feasible traces later on.

Requiring v = k after that→ v 6= k ∧ v = k → trace not generated.
A trace that requires v ≥ k is reduced to requiring v > k .

Using sets of values (= constraints) helps reduce the search space.
Still, some operations are difficult to model.
AskRandom(n): only length modeled.

madrid institute for advanced studies in software development technologies



www.imdea.org

Evaluation

60.000 test sequences, varying length.
Testing with only 2%-3% of sequences.
Around one hour to execute.
Summary: out of 1506 test sequences, 84 mistmatches.
All of them due to misinterpretation of documentation or faults in recently
optimized versions of software.

1 Make no assumptions.
2 Premature optimization is the root of all evil.

madrid institute for advanced studies in software development technologies



www.imdea.org

Evaluation

60.000 test sequences, varying length.
Testing with only 2%-3% of sequences.
Around one hour to execute.
Summary: out of 1506 test sequences, 84 mistmatches.
All of them due to misinterpretation of documentation or faults in recently
optimized versions of software.

1 Make no assumptions.
2 Premature optimization is the root of all evil.

madrid institute for advanced studies in software development technologies



www.imdea.org

Part V

What Now?

madrid institute for advanced studies in software development technologies



www.imdea.org

Conclusions

Yes, formal methods are used in industry — more than usually thought.
Not to write payroll software.

But payroll software is already written...

High-availability, dependable software.
NASA; Prolog to formalize JVM class system; SLAM at Microsoft; Esterel for
hardware, avionics, and cars; Airbus
automotive industry, cyber-physical systems.

Also to discover bugs in existing implementations.
E.g., FREAK SSL negotiation bug — team INRIA, Microsoft Research, IMDEA
Software Institute.

madrid institute for advanced studies in software development technologies



www.imdea.org

Recommendations [BH06] and Old Man Sayings
Use well-tested, well-documented formal method.
With tool support.
If possible, have an expert at hand – at least at the beginning.
Document everything: every assumption, every decision.
Don’t lower quality standards.
Test and test again.

Trying to formalize will force you to think about a problem. Thinking about
a problem will make you understand it.

madrid institute for advanced studies in software development technologies



www.imdea.org

Recommendations [BH06] and Old Man Sayings
Use well-tested, well-documented formal method.
With tool support.
If possible, have an expert at hand – at least at the beginning.
Document everything: every assumption, every decision.
Don’t lower quality standards.
Test and test again.
Trying to formalize will force you to think about a problem. Thinking about
a problem will make you understand it.

madrid institute for advanced studies in software development technologies



www.imdea.org

Jean-Raymond Abrial.
The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

Jean-Raymond Abrial.
Modeling in Event-B: System and Software Engineering.
Cambridge University Press, 2010.

Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier.
METEOR: A Successful Application of B in a Large Project.
In FM’99—Formal Methods, pages 369–387. Springer, 1999.

Jonathan Bowen and Michael Hinchey.
Ten Commandments of Formal Methods... Ten Years Later.
Computer, 39(1):40–48, 2006.

Leslie Lamport.
Specifying Systems: The TLA+ Language and Tools for Hardware and
Software Engineers.

madrid institute for advanced studies in software development technologies



Addison-Wesley Longman Publishing Co., Inc., 2002.

Chris Newcombe, Rath Tim, Fan Zhang, Bogdan Munteanu, Marc
Brooker, and Michael Deardeuff.
Use of Formal Methods at Amazon Web Services.
2014.

Jan Philipps, Alexander Pretschner, Oscar Slotosch, Ernst Aiglstorfer,
Stefan Kriebel, and Kai Scholl.
Model-Based Test Case Generation for Smart Cards.
Electronic Notes in Theoretical Computer Science, 80:170–184, 2003.

Jim Woodcock, Peter Gorm Larsen, Juan Bicarregui, and John
Fitzgerald.
Formal Methods: Practice and Experience.
ACM Computing Surveys, 2009.



www.imdea.org

Formal Methods at Work

M. Carro

IMDEA Software Institute
and

Technical University of Madrid

May 11, 2015

madrid institute for advanced studies in software development technologies


	Where Do We Stand?
	The General Does Not Need a Driver behm1999meteor
	Amazon Had 2.000.000.000.000 Things to Care About newcombe2014use
	That Is Not What I Meant philipps2003model
	What Now?

